000 02723cam a22003738i 4500
999 _c737
_d737
001 21336577
003 OSt
005 20251027105703.0
008 191130s2020 enk b 001 0 eng
010 _a 2019040762
020 _a9781108455145
_q(paperback)
040 _aLBSOR/DLC
_beng
_erda
_cDLC
042 _apcc
050 0 0 _aQ325.5
_b.D45 2020
082 0 0 _a006.31
_bD325 2020
_223
100 1 _aDeisenroth, Marc Peter,
_eauthor.
245 1 0 _aMathematics for machine learning /
_cMarc Peter Deisenroth, A. Aldo Faisal, Cheng Soon Ong.
263 _a1912
264 1 _aCambridge ;
_aNew York, NY :
_bCambridge University Press,
_c2020.
300 _axvii, 371 pages cm
336 _atext
_btxt
_2rdacontent
337 _aunmediated
_bn
_2rdamedia
338 _avolume
_bnc
_2rdacarrier
504 _aIncludes bibliographical references and index.
505 0 _aIntroduction and motivation -- Linear algebra -- Analytic geometry -- Matrix decompositions -- Vector calculus -- Probability and distribution -- Continuous optimization -- When models meet data -- Linear regression -- Dimensionality reduction with principal component analysis -- Density estimation with Gaussian mixture models -- Classification with support vector machines.
520 _a"The fundamental mathematical tools needed to understand machine learning include linear algebra, analytic geometry, matrix decompositions, vector calculus, optimization, probability, and statistics. These topics are traditionally taught in disparate courses, making it hard for data science or computer science students, or professionals, to efficiently learn the mathematics. This self-contained textbook bridges the gap between mathematical and machine learning texts, introducing the mathematical concepts with a minimum of prerequisites. It uses these concepts to derive four central machine learning methods: linear regression, principal component analysis, Gaussian mixture models, and support vector machines. For students and others with a mathematical background, these derivations provide a starting point to machine learning texts. For those learning the mathematics for the first time, the methods help build intuition and practical experience with applying mathematical concepts"--
_cProvided by publisher.
650 0 _aMachine learning
_xMathematics.
700 1 _aFaisal, A. Aldo,
_eauthor.
700 1 _aOng, Cheng Soon,
_eauthor.
776 0 8 _iOnline version:
_aDeisenroth, Marc Peter.
_tMathematics for machine learning.
_dCambridge, United Kingdom ; New York : Cambridge University Press, 2020.
_z9781108679930
_w(DLC) 2019040763
906 _a7
_bcbc
_corignew
_d1
_eecip
_f20
_gy-gencatlg
942 _2ddc
_cCIR